Twisted Drinfeld double : from strings to the Kitaev model

Thomas Krajewski
Centre de Physique Théorique
Aix-Marseille University
thomas.krajewski@univ-amu.fr

Quantum gravity in Bordeaux
Bordeaux
July, 2023

Introduction

Path integral derivation of the operators T that lift the action of a finite group G to the twisted sectors of bosonic strings on the orbifold \mathcal{M} / G in a 3 -form magnetic background H.

String propagator written as a sum over worldsheets each carrying its own magnetic contribution.

The algebra generated by the operators T is the quasi-quantum group $D_{\omega}[G]$, introduced in the context of conformal field theory by R . Dijkgraaf, V. Pasquier and P. Roche with

- a product is determined by the commutation with propagation

$$
\begin{equation*}
T 00=0 \quad 0 \quad T, \tag{1}
\end{equation*}
$$

- a coproduct follows from the commutation with the most basic interaction

Magnetic amplitude for twisted sectors are also ground states of a version of the Kitaev lattice model

States and symmetries in quantum mechanics

A quantum system is defined by a Hilbert space \mathcal{H} and observables which are Hermitian operators acting on \mathcal{H}. A state of the system is defined by a line s in \mathcal{H} (normalized vectors defined up to a phase).

The probability of observing the system in the state represented by χ knowing that it is in the state represented by ψ is $|\langle\psi, \chi\rangle|^{2}$.
A symmetry is a transformation of the space of states $s \rightarrow s^{\prime}$ preserving the transition probabilities, $\left|\left\langle\psi^{\prime}, \chi^{\prime}\right\rangle\right|^{2}=|\langle\psi, \chi\rangle|^{2}$.
Theorem (Wigner)
Each symmetry acting on states $s \rightarrow s^{\prime}$ can be implemented by a unitary or antiunitary operator U on \mathcal{H}.

$$
\psi \in s \Rightarrow \psi^{\prime}=U \psi \in s^{\prime}
$$

and these operators are unique up to a phase.
Antiunitary symmetries : time reversal T, charge conjugation C

Projective representations

If a group G acts on the states preserving the transition probabilities, the operators U_{g} are only defined up to phases

$$
U_{g} U_{h}=\omega_{g, h} U_{g h}
$$

Projective representations are classified using group cohomology

- associativity constraint : ω is a 2-cocycle

$$
U_{g}\left(U_{h} U_{k}\right)=\left(U_{g} U_{h}\right) U_{k} \Leftrightarrow \underbrace{\omega_{h, k} \omega_{g h, k}^{-1} \omega_{g, h k} \omega_{g, h}^{-1}}_{(\delta \omega)_{g, h, k}}=1
$$

- triviality : ω is a coboundary

$$
\omega_{g, h}=\underbrace{\eta_{h} \eta_{g h}^{-1} \eta_{g}}_{(\delta \eta)_{g, h}} \Leftrightarrow \quad V_{g} V_{h}=V_{g h} \quad \text { with } \quad V_{g}=\eta_{g} U_{g}
$$

General group cohomology : n-cochains are functions on n copies of G with values in a abelian group carrying an action of $G, \delta^{2}=0$ with

$$
\begin{aligned}
& \delta \omega\left(g_{0}, g_{1}, \ldots, g_{n}\right)=g_{0} \cdot \omega\left(g_{1}, \ldots, g_{n}\right) \\
& \quad \times \prod_{i=0}^{n-1}\left[\omega\left(g_{0}, \ldots, g_{i} g_{i+1}, \ldots\right)\right]^{(-1)^{i-1}} \times\left[\omega\left(g_{0}, g_{1}, \ldots, g_{n-1}\right)\right]^{(-1)^{n-1}}
\end{aligned}
$$

Magnetic amplitude for a particle

For a particle on a manifold \mathcal{M} in a magnetic background B (closed 2-form with integral periods), wave functions are sections of a line bundle \mathcal{L} over \mathcal{M} with a connection ∇ of curvature B.

In the path integral approach, the kernel of the evolution operator is

$$
\begin{equation*}
K(y, x)=\int_{\substack{ \\\varphi(a)=x \\ \varphi(b)=y}}^{[D \varphi] \mathrm{e}^{-S[\varphi]} \mathcal{A}[\varphi]} \tag{3}
\end{equation*}
$$

S classical action (not involving the magnetic field) $\mathcal{A}[\varphi]$ holonomy of ∇ along the path φ.

Both \mathcal{L} and $\mathcal{A}[\varphi]$ are constructed using a good open cover $\left\{U_{i}\right\}$

Invariance under gauge transformations of A_{i} and $f_{i j}$.

Explicit expression of the magnetic amplitude

Using a cover of the path, the magnetic amplitude (holonomy of the connection along the path) is

$$
\begin{equation*}
\mathcal{A}_{i j}[\varphi]=\operatorname{expi}\left\{\sum_{I_{\alpha} \in I} \int_{I_{\alpha}} \varphi^{*} A_{i_{\alpha}}\right\} \prod_{\substack{I_{\alpha} \in I^{\prime} \\ v_{\beta} \in \partial I_{\alpha}}} f_{i_{\alpha} j_{\beta}}^{-\epsilon_{\alpha \beta}}\left(\varphi\left(v_{\beta}\right)\right), \tag{5}
\end{equation*}
$$

where $\epsilon_{\alpha \beta}=+1$ if I_{α} is arriving at v_{β} and -1 if it is leaving.

In accordance with its interpretation as a map from the fibre at x of \mathcal{L} to that at y, it is independent of the covering and gauge invariant, except at the boundaries.

Projective group action on wave functions

Classical symmetry : Action of a (finite) group G on \mathcal{M} such that S is genuinely invariant and $g^{*} B=B$.

Quantum symmetry: Lift of the action of G to the Hilbert space \mathcal{H} of wave functions (ϕ_{g} isomorphism between $\left(g^{*} \mathcal{L}, g^{*} \nabla\right)$ and (\mathcal{L}, ∇))

$$
\begin{equation*}
T_{g} \psi(x)=\phi_{g}(x) \psi(x \cdot g) \tag{6}
\end{equation*}
$$

The phases are determined in the path integral formalism by the commutation of T_{g} with propagation $\left(K T_{g}=T_{g} K\right)$

$$
\begin{equation*}
\mathcal{A}[\varphi \cdot g]=\phi_{g}^{-1}(y) \mathcal{A}[\varphi] \phi_{g}(x) \tag{7}
\end{equation*}
$$

Projective representation $T_{g} T_{h}=\omega_{g, h} T_{g h}$ with the group 2-cocycle

$$
\begin{equation*}
\omega_{g, h}=\phi_{h}(x \cdot g) \phi_{g h}^{-1}(x) \phi_{g}(x) . \tag{8}
\end{equation*}
$$

The operators T_{g} generate the twisted group algebra.
The cohomology class of ω is an obstruction to the existence of a quantum theory on \mathcal{M} / G (no invariant states in \mathcal{H}).

Generalization of magnetic translations for a particle on \mathbb{R}^{N} in a uniform magnetic field with $G=\mathbb{Z}^{N}$. (twisted group algebra $=$ noncommutative torus.)

Magnetic fields for closed strings

A closed string on \mathcal{H} sweeping a worldsheet Σ couples to a 2 -form magnetic potential B (Kalb-Ramond field) with 3 -form field strength $H=d B$

$$
\begin{equation*}
0 \rightarrow \mathrm{e}^{\mathrm{i} \int_{\Sigma} B} \tag{9}
\end{equation*}
$$

In general the potentials are only locally defined and correspond to a gerb with connection from which we compute the holonomy around Σ using a triangulation

$$
\left\{\begin{array}{llrll}
H_{i} & = & \mathrm{d} B_{i} & \text { on } & U_{i}, \tag{10}\\
B_{j}-B_{i} & = & \mathrm{d} B_{i j} & \text { on } & U_{i} \cap U_{j}, \\
B_{j k}-B_{i k}+B_{i j} & = & i d \log f_{i j k} & \text { on } & U_{i} \cap U_{j} \cap U_{k}, \\
f_{j k l}\left(f_{i k l}\right)^{-1} f_{i j l}\left(f_{i j k}\right)^{-1} & = & 1 & \text { on } & U_{i} \cap U_{j} \cap U_{k} \cap U_{l},
\end{array}\right.
$$

with two layers of gauge transformations.
Example of WZW models with $\mathcal{M}=\operatorname{SU}(\mathrm{N})$ and $H=\frac{k}{12 \pi} \operatorname{Tr}\left(g^{-1} d g\right)^{3}$.
Interpretation of the holonomy around cylinders as parallel transport for a line bundle over the loop space.

Tricomplex with de Rham, Cech and group cohomologies

 Tricomplex with cochains $C_{p, q, r}$ that are de Rham forms of degree p, defined on $(q+1)$-fold intersections of a "good invariant cover", $U_{i_{0}} \cap \cdots \cap U_{i_{q}}$ and functions of r group indices.
Three commuting differentials

- de Rham differential in the p direction (idlog for functions)
- C̆ech coboundary $\check{\delta}$ in the q direction
- group coboundary δ in the r direction

For any fixed value of r, we have a Čech-de Rham bicomplex,

$$
\begin{equation*}
C_{r, s}^{\mathrm{tot}}=\bigoplus_{p+q=s} C_{p, q, r}, \tag{11}
\end{equation*}
$$

with the Deligne differential defined by $\mathcal{D}=\mp d \pm \check{\delta}$ fulfilling $\mathcal{D}^{2}=0$ and $\delta \mathcal{D}=\mathcal{D} \delta$.

Symmetries of 2-form potentials

Starting with $\mathrm{H}=\left(H_{i}, 0,0,1\right) \in C_{0,3}^{\text {tot }}$ such that $\mathcal{D H}=0$ and $\delta \mathrm{H}=0$ (globally defined closed invariant 3-form), we solve a series of cohomological equations ending in a constant 3-cocycle $\omega \in C_{3,0}^{\text {tot }}$, with gauge ambiguities in the definition of B and A.

- $g^{*} \mathrm{~B}-\mathrm{B}=\operatorname{DA}_{g}$
- $g^{*} \mathrm{~A}_{h}-\mathrm{A}_{g h}+\mathrm{A}_{g}=\mathcal{D} \Phi_{g, h}$
- $g^{*} \Phi_{h, k}\left(\Phi_{g h, k}\right)^{-1} \Phi_{g, h k}\left(\Phi_{g, h}\right)^{-1}=\omega_{g, h, k}$

Magnetic amplitude for twisted sectors

Twisted sectors on \mathcal{M} / G are strings $X:[0,2 \pi] \rightarrow \mathcal{M}$ that close up to their winding $w \in G: \quad X(2 \pi)=X(0) \cdot w$.

Free string propagation involves a path integral with magnetic amplitude

$$
\begin{equation*}
\mathcal{A}[\varphi]=\mathrm{e}^{\mathrm{i} \int_{\Sigma} \mathrm{B}+\mathrm{i} \int_{x}^{y} \mathrm{~A}_{w}} \tag{12}
\end{equation*}
$$

for the cylinder with cut and triangulation embedded in \mathcal{M}

String wave functions $\psi=$ sections of a line bundle over twisted sectors Magnetic amplitude for cylinders $=$ parallel transport
Invariance under simultaneous gauge transformations of B, A, Φ and ψ

Stringy magnetic translations and their algebra

Stringy magnetic translations $T_{g}^{w}: \mathcal{H}_{w g} \rightarrow \mathcal{H}_{w}$ lift the group action to the twisted sectors commuting with propagation

$$
\begin{equation*}
T_{g}^{w} \Psi(X)=\Gamma_{w, g}(x) \mathrm{e}^{-\mathrm{i} \int_{x}^{x w} \mathrm{~A}_{g}} \Psi(X \cdot g) \tag{13}
\end{equation*}
$$

with $\Gamma_{w, g}=\Phi_{g, w \varepsilon} \Phi_{w, g}^{-1}$ and $w^{g}=g^{-1} w g$.
Projective representation on the twisted sectors identical to the multiplication law of the quasiquantum group $D_{\omega}[G]$

$$
\begin{equation*}
T_{g}^{w} T_{h}^{v}=\delta_{v, w^{g}} \frac{\omega_{w, g, h} \omega_{g, h, w^{g h}}}{\omega_{g, w^{g}, h}} T_{g h}^{w} \tag{14}
\end{equation*}
$$

Combinatorial interpretation in terms of tetrahedra representing the 3-cocycle (transgression ($n+1$)-cocycle $\rightarrow n$-cocycle depending on w)

Interactions

Most basic interaction involves pair of pants

with magnetic amplitude contributing to the decay $\mathcal{H}_{v w} \rightarrow \mathcal{H}_{v} \otimes \mathcal{H}_{w}$

$$
\begin{equation*}
\mathcal{A}[\varphi]=\mathrm{e}^{\mathrm{i} \int_{\Sigma} \mathrm{B}+\mathrm{i} \int_{x}^{t} \mathrm{~A}_{w w}+\mathrm{i} \int_{t}^{y} \mathrm{~A}_{v}+\mathrm{i} \int_{t v}^{z} \mathrm{~A}_{w}} \Phi_{v, w}^{-1}(t), \tag{15}
\end{equation*}
$$

Φ is inserted at the splitting point to maintain gauge invariance for A.
Global anomalies for magnetic amplitudes on arbitrary surfaces that depend on ω and on a representation of $\pi_{1}(\Sigma)$.
Consistency condition $\omega=1$ for the orbifold \mathcal{M} / G. (Analogous to the particle's case.)

Quasi-Hopf algebras

An algebra \mathcal{A} is a Hopf algebra if it admits a counit $\epsilon: \mathcal{A} \rightarrow \mathbb{K}$, coproduct $\Delta: \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}$ and and antipode $S: \mathcal{A} \rightarrow \mathcal{A}$ such that $m \circ(S \otimes \mathrm{id}) \circ \Delta=m \circ(\mathrm{id} \otimes S) \circ \Delta=\epsilon$.

Examples:

- group algebra $\mathbb{C}[G]=\left\{\sum^{\epsilon} a(g)=1\right.$ and $S(g)=g^{-1}$ with $\Delta(g)=g \otimes g$, $\epsilon(g)=1$ and $S(g)=g^{-1}$
- functions on G with pointwise product, $\Delta f(g, h)=$ $f(g h), \epsilon(f)=1, S f(g)=f\left(g^{-1}\right)$.
Modules over a Hopf algebra form a category with trivial representation (ϵ), tensor products (Δ) and duals (S).
A quasi-Hopf algebra \mathcal{A} has a coproduct associative up to the Drinfel'd associator $\Omega \in \mathcal{A} \otimes \mathcal{A} \otimes \mathcal{A}$

$$
(\mathrm{id} \otimes \Delta) \circ \Delta=\Omega[(\Delta \otimes \mathrm{id}) \circ \Delta] \Omega^{-1}
$$

obeying the pentagon axiom.
A bialgebra is quasi-cocommutative, if there is an invertible $\mathcal{R} \in \mathcal{A} \otimes \mathcal{A}$ $\Delta^{\mathrm{op}}(b)=\mathcal{R} \Delta(b) \mathcal{R}^{-1}$
\Rightarrow braid group action $\sigma \circ R: \mathcal{H}_{1} \otimes \mathcal{H}_{2} \rightarrow \mathcal{H}_{2} \otimes \mathcal{H}_{1}, \sigma(\psi \otimes \chi)=\chi \otimes \psi$

Derivation of the coproduct

Commutation of the orbifold group action with the decay process dictates the action of T_{g}^{w} on $\mathcal{H}_{u} \otimes \mathcal{H}_{v}$ form whcih we read the coproduct

$$
\begin{equation*}
\Delta\left(T_{g}^{u}\right)=\sum_{v w=u} \frac{\omega_{v, w, g} \omega_{g, v^{g}, w^{g}}}{\omega_{v, g, w^{g}}} T_{g}^{v} \otimes T_{g}^{w} . \tag{16}
\end{equation*}
$$

Combinatorial interpretation of the extra phase in the action on tensor products

The operators T_{g}^{w} generate the quasi-quantum group $D_{\omega}[G]$ which is a quasi-triangular quasi-Hopf algebra deformation of the quantum double of the group algebra of G.

Action of the quasi-Hopf algebra

\mathcal{R}-matrix defines a braid group action on tensor products

Coassociativity up to the Drinfeld associator: states in $\left(\mathcal{H}_{u} \otimes \mathcal{H}_{v}\right) \otimes \mathcal{H}_{w}$ and in $\mathcal{H}_{u} \otimes\left(\mathcal{H}_{v} \otimes \mathcal{H}_{w}\right)$ only differ by the global phase $\omega_{u, v, w}$.

Antipode related to reversing the string orientation $S\left(T_{g}^{w}\right)=\propto T_{g^{-1}}^{\left(w^{-1}\right)^{g}}$

Discrete de Rham cohomology

A n-form $\Omega\left(x_{0}, \ldots, x_{n}\right)$ is an antisymmetric function on X^{n+1} with values in an abelian group, equipped with a differential

$$
d \Omega\left(x_{0}, \ldots, x_{n+1}\right)=\sum_{i=0}^{n+1}(-1)^{i} \Omega(\underbrace{x_{0}, \ldots, \check{x}_{i}, \ldots, x_{n+1}}_{x_{i} \text { removed }})
$$

Geometrical interpretation: $\Omega\left(x_{0}, \ldots, x_{n}\right)$ flux over a n-simplex with $n+1$ vertices x_{0}, \ldots, x_{n}.

Some simple examples

$$
\begin{aligned}
d \Phi(x, y) & =\Phi(y)-\Phi(x) \\
d A(x, y, z) & =A(y, z)-A(x, z)+A(x, y) \\
d B(x, y, z, t) & =B(y, z, t)-B(x, z, t)+B(x, y, t)-B(x, y, z)
\end{aligned}
$$

This differential is nilpotent $d^{2}=0$.

Kitaev model

Kitaev model defined on a triangular graph Γ on a surface Σ with Hilbert space constructed by assigning group elements to the (oriented) edges

$$
\begin{gather*}
\Psi\left(\left\{g_{e}\right\}\right) \in \mathcal{H}=\bigotimes_{\text {edges }} \operatorname{Fun}(G \rightarrow \mathbb{C}) \tag{17}\\
H=-\sum_{\text {faces } f} P_{f}-\sum_{\text {vertices } v} \delta_{v} \tag{18}
\end{gather*}
$$

P_{f} (translation of face variables $u \rightarrow g^{-1} u, w \rightarrow w g, \ldots$) and δ_{v} (constraint $u v w^{-1}=1$) are mutually commuting projectors
Ground states given by moduli space $\operatorname{Hom}\left(\pi_{1}(\Sigma) \rightarrow G\right) / \operatorname{Ad}(G)$

Twisted Kitaev model

Triangulate each face of Γ and decorate vertices with variables $x_{v} \in X$

$$
\begin{gathered}
\Psi\left(\left\{g_{e}\right\},\left\{x_{v}\right\}\right) \in \bigotimes_{\text {edges }} \operatorname{Fun}(G \rightarrow \mathbb{C}) \bigotimes_{\text {vertices }} \operatorname{Fun}(X \rightarrow \mathbb{C}) \\
P_{f} \psi(x, w, \ldots)=\psi\left(x g, g^{-1} w, \ldots\right) \times \prod_{\text {vertices in } \partial f} \omega_{u, v, g} \sum_{\text {around } v} \delta_{x_{j}, x_{i} g_{i j}}
\end{gathered}
$$

Ground states

A ground state can be constructed using the previous gerbe amplitude

$$
\begin{aligned}
\Psi\left(\left\{g_{e}\right\},\left\{x_{v}\right\}\right) & =\prod_{\text {vertices }} \delta_{x u, y} \delta_{y v, z} \delta_{y w, z} \times \\
& \times \prod_{\text {triangles }} \operatorname{exp~i} B(x, y, z) \prod_{\text {edges }} \operatorname{exp~i} A_{w}(x, y) \prod_{\text {vertices }} \Phi_{u, v}(x)
\end{aligned}
$$

- lift of a single corner

$$
\Phi_{g^{-1} u, u^{-1} v}(x g) \omega_{g, g^{-1} u, u^{-1} v}=\frac{\Phi_{g, g^{-1} v}(x)}{\Phi_{u, u^{-1} v}(x) \Phi_{g, g^{-1} u}(x)}
$$

- lift of a triangle :

$$
B(x g, y g, z g)=B(x, y, z)+A_{g}(x, y)+A_{g}(y, z)+A_{g}(z, x)
$$

- lift of an edge

$$
\begin{aligned}
& A_{g^{-1} w}(x g, y g)= \\
& \quad A_{w}(x, y)-A_{g}(x, y)+\log -i \Phi_{g, g^{-1} w}(y)+\log -i \Phi_{g, g^{-1} w}(x)
\end{aligned}
$$

Conclusion and outlooks

$D_{\omega}[G]$ is a higher dimensional generalization of projective group representations

particles	strings
2-form B	3-form H
line bundle	gerbe
2-cocycle ω	3-cocycle ω
twisted group algebra	quasi-quantum group

In both case, the theory on \mathcal{M} / G is consistent only if $\omega=1$.
Application : Discrete torsion for open membranes (work in progress)
Discrete torsion for open strings induces a projective group action on the wave functions of the endpoints (M. Douglas).
M-theory discrete torsion is a 3 -cocycle α (E. Sharpe).
finite group Chern-Simons theory (R. Dijkgraaf and E. Witten) with gauge grouo G and action derived from α provides a way to assign phases to the worldvolume swept by the membrane.
$D_{\alpha}[G]$ acts on the wave functions of the endlines of the membranes (work in progress)

