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The model

What do we do?

We apply techniques from constructive field theory (LVE) on the
O(N) model in d = 0.
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— o0

1
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@ Asymptotic series, transseries, Borel resummation
@ The partition function of the O(N) model and Stokes Phenomenon

@ Constructive techniques: BKAR formula and Loop Vertex
Expansion (LVE)

@ The free energy of the O(N)
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Asymptotic series

Asymptotic series

An asymptotic series is a formal Taylor expansion, in physics
often factorially divergent: A(g) = > 7, akg*, ay ~ k!

The series is divergent because of a bad expansion point

2 4 —p)k 2
Z(g):/e_%—gx :Z( /fI) /e_7x4k
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Borel summation (1)

We make sense of asymptotic series with the theory of Borel resummation
oo oo 3
Az) = Z arz" B(t) = Z Kk
k=0

B(t) is the Borel transform of A(z) and has typically a finite radius of
convergence! Then the Borel sum of A(z) is

flz) = X /Oo dt e=t/7 B(t) .

Z Jo

We need to address the following question

Let us start with a function f(z) which can be formally expanded in an
asymptotic series A(z). Is it always true that the Borel sum of A(z),
1 [,7 dt e7¥/2 B(t) , is equal to the function f(z) we started with?
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Borel summation (I1)
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The answer to the question is: in general NO!
A typical example is e~/

A(z)=0, — B(t)=0, — f(z)=0#ez

Borel summable function f(z) (along real line)

if it is analytic in a disk Diskg = {z € C | Re(1/z) > 1/R}
and has an asymptotic series: f(z) = Zg;é ak z¥+ Ry(z) with

IR,(2)| < K q' ¢° p~9 2|7, z € Diskg ,

Nevanlinna-Sokal theorem guarantees that the Borel sum
of Y axz" is equal to f(z) in Diskg



Introduction
0000®0

Borel summability (111)

The notion of Borel summalbility is directional
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Transseries

A transseries is an object of the following form:

Fg):Zang"—i—eégWang"—i—....

n>0 n>0
and clearly it capture also non perturbative physics. Two approaches:

@ Via the Ecalle’s theory of Resurgence when we have a differential
equation

N(N+2)Z(g, N)+((8N + 24)g + 24) Z'(g, N)+16g2Z" (g, N) = 0 .

@ Via Lefschetz thimbles when we have an integral representation

Z(g, N) = / (H jﬁ%) e—S19]
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Lefschetz thimble

Any functions /(g) with a contour C integral representations can be
decomposed as

| = / dx ef@a(x) = Z/ dx ef™@a(x) .
C i i

where J; are well chosen contours, known as Lefschetz thimbles. They
have Imf(x) =const. and cross critical points f'(x*) = 0.

[T do —5[4] 1 g 4
Z(g)—/_oo (\/%)e 2 5[¢]—§¢2+H¢~

) ,
AN S In Z(g), the Thimbles depends
S~ parametrically on g = |g|e*¥
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Stokes phenomenon (I)

For some choices of ¢ thimbles cross each others, those are known as
Stokes lines. When crossing Stokes lines Thimbles can change
discontinuously.

g>0 g<0 0/ N\

! N /
| 4
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Stokes phenomenon (II)

M) = [ [dojetr— 1
Z(g, N :/ dole 20 — =
— (1-1/%0)""?
arg(g) =0 arg(g) >
c .

Oy

Re—iQ

The branch cut singularity approaches the real line when arg(g) — .
When this happens one has to deform the contour of integration and

avoid the cut.
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Stokes phenomenon (I11)

@ Z%(g, N) integrated along R
@ Z¢.(g,N) integrated along the Hankel contour C

Starting at g > 0
Z(g,N)=Z"(g.N)

When we start tilting g in the complex plain g = |g|e*?
@ p<m — Z(g,N)=2Z%g,N)
Q p>mT — Z(g,N):ZR(ng)+Z:E(g7N)

= n
Z*g, Ny =Y alg",  Z(g,N)~ex ) allg
n=0 n=0

For g complex Z(g, N) =w )% al g" + 1e® 07 g a g”

10/18



Z(g, N)
[ele]ele] le]

other results for Z(g, N)

Z(g, N) is absolutely convergent and bounded for g € C,, :

N2
1Z(g, N)| < (cos %)

Z(g, N) is Borel summable along all the directions in C.

Z(g, N) can be continued on the entire Riemann surface. However,
past R_ it ceases to be Borel summable.

A second Stokes line is found at R, on the second sheet.

@ We can study the analytic continuation and the Stokes
phenomenon of Z(g, N) in the whole Riemann surface.
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The small-N expansion

Z<g,N):§)$ (-3) 20 zte)= [ tgmte (ln(l—z\/%a))" .

The Stokes phenomenon for Z,(g) similar to Z(g, N)

@ Z,(g) is analytic in C, and well bounded. The series has infinite
radius of convergence in N.

@ The Z,(g) are Borel summable along all the directions in C,.
@ For g € C,, Z,(g) has the perturbative expansion:
2g m (2m)| (_1)nn! — ert.
z@= Y (-Z) 5 Y fem =AW,

k™Mk my!
m>n/2 mi,...,Mym_npt12>0 Ik k
> kmg=2m, 3" my=n

@ Z,(g) can be continued t in C3, /5, and the small-N series is still
convergent. Again R_ is a Stokes line.
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Constructive techniques

The small N series of W(g, N)
1 N\"
W(g, N) = Z ol <—2) Wa(g)
n>0

where W,(g) cumulants of the random variable log(1 — ¢1/%0).
By using techniques from constructive field theory

@ The BKAR formula

@ The Loop Vertex Expansion

we get an integral representation of the W, (g)
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Results for W (g, N) (1)

The LVE representation of W(g, N) it's well bounded

@ The functions W,,(g), n > 2 are bounded by:

(2n —3)! ) g
(n—1)! |3(cos %)?

n—1

[Wa(g)l <

— analytic in C,.

@ The series N
1 N
W(g,N) = Z Tl (—2) Wn(g)
n>1
is absolutely convergent in the cardioid domain.

@ W,(g) can be analytically continued to a subdomain of the
extended Riemann sheet Cs, />. Also the analytically continued

series o) =5 1 (_/;/)n Woo(g) |

n!
n>1

is convergent in an 'extended cardioid domain’.
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Results for W (g, N) (II)

Figure: The dashed blue line is the cardioid domain, the red line is
the extended cardioid domain.

W,(g) and W(g, N) at any fixed complex N are Borel summable

along all the directions in the cut complex plane C,.
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Asymptotic expansion of W(g, N) (1)

@ The LVE is good for bounds and proofs
@ Not well suited to get the asymptotic expansion of W(g, N)

We use the Mobius inversion formula: let 7 be a partition of the set
{1,2,...n}

Z(g)=>_ [[Wpule), Wale) =D ][] Znle).

T bET ™ berm

where \; = (—=1)I71=1(x| — 1)! Grouping together the partitions with
same number of parts n; of size |

n n—k+1
. n! o
Wi(g) = Z(_l)k l(k - 1) Z W H Zi(g)"
k=1 MyeeeyNp— k410 P i=1
>~ini=n, > ni=k
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Comments

Transseries expansion of W,(g):

@ In C, the asymptotic expansion of Z;(g) is of the perturbative
type. Then W, (g) is just a finite linear combination of Cauchy
products of such series.

@ Past the Stokes line, each Z;1(g) gets an additional contribution
from the Hankel contour Zi1(g) = Z*(g) + Z5.(g).

A consequence is that

@ W,(g) has up to n—instantons contributions in his transseries.

@ W(g, N) has an infinite tower of instantons
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Conclusions

New picture of Stokes phenomenon for the of ¢* with
intermediate field and Hankel contours

Constructive techniques good for proofs

Instantons of W(g, N) past R_ without formal series
Disadvantage: more work

Future: finite dimension d > 0 QFT?
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Thank you!
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W(g, N) and constructive techniques
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Monodromy of Z(g, N)

Schematically: Z(g, N) ~w Z%(g,N) + 7 e Z%(~g,2 —N), on first
sheet (w,n) = (1,0)

lol <m:  Z(g,N)=Z%g,N),
T<p<2m: Z(g,N):ZR(g,N)—l-e?g ZR(—g,2 - N),
r<p<3m:  Z(g,N)=(1+7)Z%¢g N)+ez Z®(-g,2 - N),
3 < p < 4m: Z(g,N) =

We can write a recursion relation for w and n

_ Wok41 = Wok Wak+1) =T M2k+1 + Wokt1
wo, o) = (1,0), B . .
(wo,170) = (1,0) {772k+1 =k +wak {772(k+1) =e N Dy
Solved by introducing a transfer matrix:
wWok 1 1+7 T N
(77;() = Ak (O) , A= (e—m(N—l) e—m(N—l)) , Apte 72
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The BKAR formula

@ Let i =1...n set of labeled vertices of the complete graph /C,
@ The set of edges of K, has n(n — 1)/2 elements.

@ f:[0,1]"("=1/2 — R smooth of edge variables x;

0= [ () [(T) ] (o)

eceF
\]:| times

with

wi (ur) = 'gllnf {ues} >0,
k—1

where P,{T_, denotes the unique path in the forest F joining the vertices k

and /, and the infimum is set to zero if such a path does not exist.
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Example BKAR formula

Here an example of the BKAR applied on 2 and 3 points:

1
f(].) = f(O) +/0 dulza%Hf(Ulz)

: / \ £(1,1,1) = £(0,0,0)+

1
(/ duyo o f(u12,0,0)+2terms> +
0
1

Ox12

3 8 i
/\ E i (/ duyzdusz ————f(inf{u13, u23}, 113, u23) + )
1 2 1 2 1 2 0 8X136X23
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Loop Vertex Expansion (1)

Sketch of the derivation of LVE:

Z(g) = [1do] 37 In(1 ~ Vg BN = [e 37 B V(o)']

o=0

We introduce replicas and link paremeters x;; = 1

1y 5 s 1 15 5 s "
Zn(g) = [ez 3k,1=1 Foy, Fo; H V(o;)] _ |:ez k121 % 5oy Fo; H V(o;)
o;=0

i=1 i=1

0;j=0,x;=1

Then we use BKAR on the X link variables

—M)° F_ 52
z(g,N):Z( n) Z/ 11 duu[zzwkfw((l)‘[ 5UI§UJ>HV(J,] 0

n>0 : FeF," (ij)eF i=1

=l
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Loop Vertex Expansion (I1)

The BKAR is really useful when we want to take logarithms,
22
F T
Also we can take the derivatives explicitly

3 (- fEo) = (1) @ DVD)
( \f) - (1-1/%0)°

S () O S [ e ]

TeT,’0 (ijeT
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