# The small-*N* expansion: a constructive approach to transseries

based on:

The small-N series in the zero-dimensional O(N) model: constructive expansions and transseries (arxiv 2210.14776) [D. Benedetti, R. Gurau, H. Keppler, D. Lettera ]

LaBRI, Quantum Gravity in Bordeaux, 2023

UNIVERSITÄT HEIDELBERG



0/18

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

#### The model

#### What do we do?

We apply techniques from **constructive field theory (LVE)** on the O(N) model in d = 0.

$$Z(g,N) = \int_{-\infty}^{+\infty} \left[ \prod_{i=1}^{N} d\phi_i \right] e^{-\frac{1}{2}\phi_i \phi_i - \frac{g}{4!} (\phi_i \phi_i)^2} = \int_{-\infty}^{+\infty} [d\sigma] e^{-\frac{1}{2}\sigma^2} \frac{1}{\left(1 - i\sqrt{\frac{g}{3}}\sigma\right)^{N/2}}$$

- Asymptotic series, transseries, Borel resummation
- The partition function of the O(N) model and Stokes Phenomenon
- Constructive techniques: BKAR formula and Loop Vertex Expansion (LVE)
- The free energy of the O(N)

#### Asymptotic series

#### Asymptotic series

An asymptotic series is a formal Taylor expansion, in physics often factorially divergent:  $A(g) = \sum_{k=0}^{\infty} a_k g^k$ ,  $a_k \sim k!$ 

The series is divergent because of a bad expansion point

$$Z(g) = \int_{x} e^{-\frac{x^{2}}{2} - gx^{4}} = \sum_{k=0}^{\infty} \frac{(-g)^{k}}{k!} \int_{x} e^{-\frac{x^{2}}{2}} x^{4k}$$



### Borel summation (I)

We make sense of asymptotic series with the theory of Borel resummation

$$A(z) = \sum_{k=0}^{\infty} a_k z^k \qquad B(t) = \sum_{k=0}^{\infty} \frac{a_k}{k!} t^k$$

B(t) is the Borel transform of A(z) and has typically a finite radius of convergence! Then the Borel sum of A(z) is

$$f(z)=\frac{1}{z}\int_0^\infty dt\; e^{-t/z}\; B(t)\;.$$

#### We need to address the following question

Let us start with a function f(z) which can be formally expanded in an asymptotic series A(z). Is it always true that the Borel sum of A(z),  $\frac{1}{z} \int_0^\infty dt \ e^{-t/z} \ B(t)$ , is equal to the function f(z) we started with?

### Borel summation (II)

The answer to the question is: in general NO! A typical example is  $e^{-1/z}$ :

$$A(z) = 0, \quad \rightarrow \quad B(t) = 0, \quad \rightarrow \quad f(z) = 0 \neq e^{-1/z}.$$

#### Borel summable function f(z) (along real line)

if it is analytic in a disk  $\operatorname{Disk}_R = \{z \in \mathbb{C} \mid \operatorname{Re}(1/z) > 1/R\}$ and has an asymptotic series:  $f(z) = \sum_{k=0}^{q-1} a_k \ z^k + R_q(z)$  with

$$|R_q(z)| \leq K \; q! \; q^eta \; 
ho^{-q} \; |z|^q \;, \qquad z \in \mathrm{Disk}_R \;,$$

**Nevanlinna-Sokal theorem** guarantees that the Borel sum of  $\sum a_k z^k$  is equal to f(z) in  $\text{Disk}_R$ 

Z(g, N)

W(g, N) and constructive techniques

### Borel summability (III)

#### The notion of Borel summability is directional



Z(g, N)

#### Transseries

A transseries is an object of the following form:

$$F(g) \simeq \sum_{n\geq 0} a_n g^n + e^{\frac{c}{g}} g^{\gamma} \sum_{n\geq 0} b_n g^n + \dots$$

and clearly it capture also non perturbative physics. Two approaches:

• Via the Écalle's theory of Resurgence when we have a differential equation

 $N(N+2)Z(g,N) + ((8N+24)g+24)Z'(g,N) + 16g^2Z''(g,N) = 0.$ 

• Via Lefschetz thimbles when we have an integral representation

$$Z(g,N) = \int_{-\infty}^{+\infty} \left(\prod_{a=1}^{N} \frac{d\phi_a}{\sqrt{2\pi}}\right) e^{-S[\phi]}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Z(g, N) ●00000 W(g, N) and constructive techniques

#### Lefschetz thimble

Any functions I(g) with a contour  $\mathcal{C}$  integral representations can be decomposed as

$$I = \int_{\mathcal{C}} dx \ e^{f(x)} a(x) = \sum_{i} \int_{\mathcal{J}_{i}} dx \ e^{f(x)} a(x) \ .$$

where  $\mathcal{J}_i$  are well chosen **contours**, known as Lefschetz thimbles. They have Im f(x) = const. and cross critical points  $f'(x^*) = 0$ .

$$Z(g) = \int_{-\infty}^{+\infty} \left( rac{d\phi}{\sqrt{2\pi}} 
ight) \; e^{-S[\phi]} \; , \qquad S[\phi] = rac{1}{2} \phi^2 + rac{g}{4!} \phi^4 \; .$$



In Z(g), the Thimbles depends parametrically on  $g = |g|e^{i\varphi}$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

7/18

#### Stokes phenomenon (I)

#### Stokes lines

For some choices of  $\varphi$  thimbles cross each others, those are known as Stokes lines. When crossing Stokes lines Thimbles can change discontinuously.



Z(g, N) 00€000 W(g, N) and constructive techniques

### Stokes phenomenon (II)



The branch cut singularity approaches the real line when  $\arg(g) \to \pi$ . When this happens one has to **deform the contour** of integration and **avoid the cut**.

#### Stokes phenomenon (III)

•  $Z^{\mathbb{R}}(g, N)$  integrated along  $\mathbb{R}$ 

•  $Z_{\pm}^{C}(g, N)$  integrated along the Hankel contour C Starting at g > 0 $Z(-N) = Z_{\pm}^{R}(-N)$ 

$$Z(g,N)=Z^{\mathbb{R}}(g,N)$$

When we start tilting g in the complex plain  $g=|g|e^{\imath arphi}$ 

• 
$$\varphi < \pi \rightarrow Z(g, N) = Z^{\mathbb{R}}(g, N)$$
  
•  $\varphi > \pi \rightarrow Z(g, N) = Z^{\mathbb{R}}(g, N) + Z^{C}_{\pm}(g, N)$ 

$$Z^{\mathbb{R}}(g, N) \simeq \sum_{n=0}^{\infty} a_n^{(0)} g^n, \qquad Z^{C}(g, N) \simeq e^{\frac{3}{2g}} \sum_{n=0}^{\infty} a_n^{(1)} g^n$$
  
For g complex  $Z(g, N) = \omega \sum_{n=0}^{\infty} a_n^{(0)} g^n + \eta e^{\frac{3}{2g}} \sum_{n=0}^{\infty} a_n^{(1)} g^n$ 

#### Some other results for Z(g, N)

• Z(g, N) is absolutely convergent and bounded for  $g \in \mathbb{C}_{\pi}$  :

 $|Z(g, N)| \leq \left(\cos \frac{\varphi}{2}\right)^{-N/2}$ 

- Z(g, N) is Borel summable along all the directions in  $\mathbb{C}_{\pi}$ .
- Z(g, N) can be continued on the entire Riemann surface. However, past ℝ<sub>−</sub> it ceases to be Borel summable.
- $\bullet\,$  A second Stokes line is found at  $\mathbb{R}_+$  on the second sheet.
- We can study the analytic continuation and the **Stokes** phenomenon of Z(g, N) in the whole Riemann surface.

#### The small-N expansion

$$Z(g,N) = \sum_{n\geq 0} \frac{1}{n!} \left(-\frac{N}{2}\right)^n Z_n(g) , \quad Z_n(g) = \int_{-\infty}^{+\infty} [d\sigma] e^{-\frac{1}{2}\sigma^2} \left(\ln(1-\imath\sqrt{\frac{g}{3}}\sigma)\right)^n$$

The Stokes phenomenon for  $Z_n(g)$  similar to Z(g, N)

- Z<sub>n</sub>(g) is analytic in C<sub>π</sub> and well bounded. The series has infinite radius of convergence in N.
- The  $Z_n(g)$  are Borel summable along all the directions in  $\mathbb{C}_{\pi}$ .
- For  $g \in \mathbb{C}_{\pi}$ ,  $Z_n(g)$  has the perturbative expansion:

$$Z_n(g) \simeq \sum_{m \ge n/2} \left( -\frac{2g}{3} \right)^m \frac{(2m)!}{2^{2m}m!} \sum_{\substack{m_1, \dots, m_{2m-n+1} \ge 0 \\ \sum km_k = 2m, \ \sum m_k = n}} \frac{(-1)^n n!}{\prod_k k^{m_k} m_k!} \equiv Z_n^{\text{pert.}}(g) \,.$$

Z<sub>n</sub>(g) can be continued t in C<sub>3π/2</sub>, and the small-N series is still convergent. Again ℝ<sub>−</sub> is a Stokes line.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

#### Constructive techniques

The small N series of W(g, N)

$$W(g, N) = \sum_{n \ge 0} \frac{1}{n!} \left(-\frac{N}{2}\right)^n W_n(g)$$

where  $W_n(g)$  cumulants of the random variable  $\log(1 - i\sqrt{\frac{g}{3}}\sigma)$ . By using techniques from **constructive field theory** 

- The BKAR formula
- The Loop Vertex Expansion

we get an integral representation of the  $W_n(g)$ 

Z(g, N)

W(g, N) and constructive techniques

### Results for W(g, N) (I)

The LVE representation of W(g, N) it's well bounded

• The functions  $W_n(g), n \ge 2$  are bounded by:

$$|W_n(g)| \leq \frac{(2n-3)!}{(n-1)!} \left| \frac{g}{3(\cos \frac{\varphi}{2})^2} \right|^{n-1} \ \to \text{analytic in } \mathbb{C}_{\pi}.$$

The series

$$W(g, N) = \sum_{n \ge 1} \frac{1}{n!} \left(-\frac{N}{2}\right)^n W_n(g)$$

is absolutely convergent in the cardioid domain.

•  $W_n(g)$  can be analytically continued to a subdomain of the extended Riemann sheet  $\mathbb{C}_{3\pi/2}$ . Also the analytically continued series

$$W_{\theta}(g, N) = \sum_{n\geq 1} \frac{1}{n!} \left(-\frac{N}{2}\right)^n W_{n\theta}(g) ,$$

is convergent in an 'extended cardioid domain'.

#### Z(g, N) 000000

W(g, N) and constructive techniques

### Results for W(g, N) (II)



Figure: The dashed blue line is the cardioid domain, the red line is the extended cardioid domain.

 $W_n(g)$  and W(g, N) at any fixed complex N are Borel summable along all the directions in the cut complex plane,  $\mathbb{C}_{\overline{w}}$ , where  $w \in \mathbb{R}$  and  $w \in \mathbb{R}$ 

#### Asymptotic expansion of W(g, N) (I)

- The LVE is good for bounds and proofs
- Not well suited to get the asymptotic expansion of W(g, N)

We use the Möbius inversion formula: let  $\pi$  be a partition of the set  $\{1,2,...n\}$ 

$$Z_n(g) = \sum_\pi \prod_{b\in\pi} W_{|b|}(g) , \qquad W_n(g) = \sum_\pi \lambda_\pi \prod_{b\in\pi} Z_{|b|}(g) ,$$

where  $\lambda_{\pi} = (-1)^{|\pi|-1}(|\pi|-1)!$  Grouping together the partitions with same number of parts  $n_i$  of size i

$$W_n(g) = \sum_{k=1}^n (-1)^{k-1} (k-1)! \sum_{\substack{n_1, \dots, n_{n-k+1} \ge 0 \\ \sum in_i = n, \sum n_i = k}} \frac{n!}{\prod_i n_i! (i!)^{n_i}} \prod_{i=1}^{n-k+1} Z_i(g)^{n_i}$$

#### Comments

Transseries expansion of  $W_n(g)$ :

- In C<sub>π</sub> the asymptotic expansion of Z<sub>i</sub>(g) is of the perturbative type. Then W<sub>n</sub>(g) is just a finite linear combination of Cauchy products of such series.
- Past the Stokes line, each Z<sub>i±</sub>(g) gets an additional contribution from the Hankel contour Z<sub>i±</sub>(g) = Z<sub>i</sub><sup>ℝ</sup>(g) + Z<sub>i±</sub><sup>C</sup>(g).

A consequence is that

$$W_n(g) \simeq \sum (...) + e^{\frac{3}{2g}} \sum (...) + ... + e^{n\frac{3}{2g}} \sum (...)$$

- $W_n(g)$  has up to *n*-instantons contributions in his transseries.
- W(g, N) has an infinite tower of instantons

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

#### Conclusions

- New picture of Stokes phenomenon for the of  $\phi^4$  with intermediate field and Hankel contours
- Constructive techniques good for proofs
- Instantons of W(g, N) past  $\mathbb{R}_-$  without formal series
- Disadvantage: more work
- Future: finite dimension d > 0 QFT?

Z(g, N) 000000

## Thank you!

Z(g, N) 000000 W(g, N) and constructive techniques

イロト 不得 トイヨト イヨト ニヨー

### Monodromy of Z(g, N)

Schematically:  $Z(g, N) \sim \omega Z^{\mathbb{R}}(g, N) + \eta e^{\frac{3}{2g}} Z^{\mathbb{R}}(-g, 2-N)$ , on first sheet  $(\omega, \eta) = (1, 0)$ 

$$\begin{split} |\varphi| &< \pi : \qquad Z(g,N) = Z^{\mathbb{R}}(g,N) ,\\ \pi &< \varphi < 2\pi : \qquad Z(g,N) = Z^{\mathbb{R}}(g,N) + e^{\frac{3}{2g}} Z^{\mathbb{R}}(-g,2-N) ,\\ 2\pi &< \varphi < 3\pi : \qquad Z(g,N) = (1+\tilde{\tau}) Z^{\mathbb{R}}(g,N) + e^{\frac{3}{2g}} Z^{\mathbb{R}}(-g,2-N) ,\\ 3\pi &< \varphi < 4\pi : \qquad Z(g,N) = \dots \end{split}$$

We can write a recursion relation for  $\omega$  and  $\eta$ 

$$(\omega_0,\eta_0) = (1,0) , \qquad \begin{cases} \omega_{2k+1} &= \omega_{2k} \\ \eta_{2k+1} &= \eta_{2k} + \omega_{2k} \end{cases} , \qquad \begin{cases} \omega_{2(k+1)} &= \tilde{\tau} \eta_{2k+1} + \omega_{2k+1} \\ \eta_{2(k+1)} &= e^{-\imath \pi (N-1)} \eta_{2k+1} \end{cases}$$

Solved by introducing a transfer matrix:

$$\begin{pmatrix} \omega_{2k} \\ \eta_{2k} \end{pmatrix} = A^k \begin{pmatrix} 1 \\ 0 \end{pmatrix} , \qquad A = \begin{pmatrix} 1 + \tilde{\tau} & \tilde{\tau} \\ e^{-i\pi(N-1)} & e^{-i\pi(N-1)} \end{pmatrix} , \qquad \lambda_A \pm e^{-i\pi\frac{N}{2}}$$

18/18

▲□▶▲□▶▲□▶▲□▶ □ のへで

#### The BKAR formula

- Let  $i = 1 \dots n$  set of labeled vertices of the complete graph  $\mathcal{K}_n$
- The set of edges of  $\mathcal{K}_n$  has n(n-1)/2 elements.
- $f: [0,1]^{n(n-1)/2} \to \mathbb{R}$  smooth of edge variables  $x_{ij}$

$$f(1,\ldots 1) = \sum_{\mathcal{F}} \underbrace{\int_{0}^{1} \cdots \int_{0}^{1}}_{|\mathcal{F}| \text{ times}} \left( \prod_{e \in \mathcal{F}} du_{e} \right) \left[ \left( \prod_{e \in \mathcal{F}} \frac{\partial}{\partial x_{e}} \right) f \right] \left( w_{kl}^{\mathcal{F}}(u_{\mathcal{F}}) \right),$$

with

$$w_{kl}^{\mathcal{F}}(u_{\mathcal{F}}) = \inf_{e' \in P_{k-l}^{\mathcal{F}}} \{u_{e'}\} > 0 ,$$

where  $P_{k-l}^{\mathcal{F}}$  denotes the unique path in the forest  $\mathcal{F}$  joining the vertices k and l, and the infimum is set to zero if such a path does not exist.

Z(g, N) 0000000 W(g, N) and constructive techniques

#### Example BKAR formula

Here an example of the BKAR applied on 2 and 3 points:



◆□▶ ◆□▶ ◆目▶ ▲目▶ ▲□▶ ◆○♥

#### Loop Vertex Expansion (I)

Sketch of the derivation of LVE:

$$Z_n(g) = \int [d\sigma] \ e^{-\frac{1}{2}\sigma^2} [\ln(1 - \imath\sqrt{g/3}\,\sigma)]^n \equiv \left[e^{\frac{1}{2}\frac{\delta}{\delta\sigma}\frac{\delta}{\delta\sigma}} V(\sigma)^n\right]_{\sigma=0}$$

We introduce **replicas** and **link paremeters**  $x_{ij} = 1$ 

$$Z_{n}(g) = \left[e^{\frac{1}{2}\sum_{k,l=1}^{n}\frac{\delta}{\delta\sigma_{k}}\frac{\delta}{\delta\sigma_{l}}}\prod_{i=1}^{n}V(\sigma_{i})\right]_{\sigma_{i}=0} = \left[e^{\frac{1}{2}\sum_{k,l=1}^{n}x_{kl}\frac{\delta}{\delta\sigma_{k}}\frac{\delta}{\delta\sigma_{l}}}\prod_{i=1}^{n}V(\sigma_{i})\right]_{\sigma_{i}=0,x_{ij}=1}$$

Then we use BKAR on the  $x_{ij}$  link variables

$$Z(g,N) = \sum_{n\geq 0} \frac{\left(-\frac{N}{2}\right)^n}{n!} \sum_{\mathcal{F}\in\mathcal{F}_n} \int \prod_{(i,j)\in\mathcal{F}} du_{ij} \left[ e^{\frac{1}{2}\sum w_{kl}^{\mathcal{F}} \frac{\delta^2}{\delta\sigma_k \delta\sigma_l}} \left(\prod_{(i,j)\in\mathcal{F}} \frac{\delta}{\delta\sigma_i} \frac{\delta}{\delta\sigma_j}\right) \prod_{i=1}^n V(\sigma_i) \right]_{\sigma_i=0}$$

・ロト・西ト・山下・山下・ 日・ うへの

### Loop Vertex Expansion (II)

The BKAR is really useful when we want to take logarithms,

$$\sum_{\mathcal{F}} \rightarrow \sum_{\mathcal{T}}$$

Also we can take the derivatives explicitly

$$\frac{\delta^d}{\delta\sigma^d} \ln\left(1 - i\sqrt{\frac{g}{3}}\sigma\right) = (-1) \frac{(d-1)! \left(i\sqrt{\frac{g}{3}}\right)^d}{\left(1 - i\sqrt{\frac{g}{3}}\sigma\right)^d},$$
$$\mathcal{W}(g, N) = -\frac{N}{2} \left[ e^{\frac{1}{2}} \frac{\delta}{\delta\sigma} \frac{\delta}{\delta\sigma} \ln\left(1 - i\sqrt{\frac{g}{3}}\sigma\right) \right]_{\sigma=0}$$
$$-\sum_{n\geq 2} \frac{1}{n!} \left(-\frac{N}{2}\right)^n \left(\frac{g}{3}\right)^{n-1} \sum_{\mathcal{T}\in\mathcal{T}_n} \int_0^1 \prod_{(i,j)\in\mathcal{T}} du_{ij} \left[ e^{\frac{1}{2}\sum w_{ij}^{\mathcal{T}} \frac{\delta^2}{\delta\sigma_i \delta\sigma_j}} \prod_i \frac{(d_i-1)!}{\left(1 - i\sqrt{\frac{g}{3}}\sigma_i\right)^{d_i}} \right]_{\sigma_i=0}$$