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AI Methods

Figure: AI Methods
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Tensorial data

Powerful computers and acquisition devices have made it possible to
capture and store real-world multidimensional data.

Figure: Examples of tensorial data
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Tensor Principal Component Analysis (PCA)

Tensor PCA is a statistical model that consists in inferring an
unknown unit vector v0 from a tensor T ∈ (Rn)⊗k given by:

Ti1...ik =
√
n β vi1 ⊗ · · · ⊗ vik + Zi1...ik

Signal-to-noise ratio Signal Noise

with Z Gaussian noise tensor such that Zi1...ik ∼ N (0, 1) and
β the signal-to-noise ratio (SNR).
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Trace invariants definition

A tensor T transforms under the group
⊗k

a=1O(n) as:

Ta1j ...a
k
j
→ O

(1)

a1j b
1
j
. . .O

(k)

akj b
k
j

Tb1j ...b
k
j

for O(i) ∈ O(n) ∀i ∈ [k] (1)

Contraction of two indices : making them equal and summing over
them. Einstein notation : two identical indices indicates an implicit
summation over them.

Example: a trace of a matrix consists in contracting its two indices.

Tr(M) =
∑

i Mii ≡ Mii

Einstein notation
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Graphs associated to Trace invariants

Trace invariants are scalars obtained by contracting 2n copies of T
invariant under

⊗k
a=1O(n). They have a very simple illustration as

graphs.

(a) Ti jk (b) Ti jkTi jk

(c)
Ti jkTi j′k′Ti′jk′Ti′j′k (d) Ti j jTikk

Figure: Example of graphs and their associated invariants

= 1
6

(
+ + + + +

)
Figure: Depiction of symmetrization as the averaged sum of the permutations.
Note that in the left hand side the order of edges does not matter since
symmetric tensors are by definition invariant under permutation of indices. 11 / 41



Matrices associated to a graph

An invariant should be able to detect a signal. But we want matrices
to recover it.

To this effect, we introduce a new set of tools in the form of matrices.
We denote by MG,e the matrix obtained by cutting an edge e of a
graph G in two half edges.

edge e

IG(T) = Ti jkTi jk

i1 i2

MG,e ≡ (Ti1jkTi2jk)i1,i2∈[n]

Cut the edge e

Figure: Obtaining a matrix by cutting the edge of a trace invariant graph G
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The algorithm

Algorithm 1: Recovery algorithm associated to the graph G and edge e

Input: The tensor T = βv⊗k + Z
Goal: Estimate v0.
Calculate the matrix MG,e(T)
Compute its top eigenvector
Output: Obtaining an estimated vector v

13 / 41



SOTA

It appears that the two state of the art (SOTA) methods are
equivalent to the algorithms associated to graphs of degree 2.

This striking fact incites us to investigate the algorithm associated to
the tetrahedral graph which is a graph of degree 4 as illustrated in the
following Figure.

Figure: Methods associated to invariant graphs
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Numerical experiment
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Figure: Comparison of Tetrahedral (blue) with the two SOTA methods (orange
and green) for n=150.
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Signal detection

Figure: Shift of invariant distribution as β increases in this case from 0 to 2.6 for
pillow diagram. The goal is to minimize the overlapping region between the noise
distribution and the spiked distribution at a fixed β
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Sum of graphs

The state-of-the-art algorithms for spiked tensor models have been
translated into certain categories of trace invariants, and some
improvements have been suggested. However, the combination of
these graphs has not yet been explored.

In the following, we will introduce the vector space spanned by certain
categories of algorithms from RTT and study them in the particular
case of signal detection.
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Categories of graphs

In the case of symmetric tensors, under the constraint that the degree
of the invariant is equal to or less than 4, one can only generate four
possible trace invariants.

These trace invariants are depicted by melonic, tadpole, tetrahedral
and pillow graphs.

In the case of non-symmetric tensors, each of these invariants,
generates a different family of a different number of invariants. But
each one of these four families is closed under permutation of the
indices of the tensor.
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Melonic category

Melonic Graphs build a category of trace invariants that describe a
contraction between two copies of a tensor.
Considering figure 6, thus one can naively assume that there are 36
possible contractions. However, there are some redundancies that can
be factored out, thus decreasing the number of invariants from 36 to
6. The 6 graphs can be seen in figure 11.

(a) I1 = Ti jkTi jk (b) I2 = Ti jkTikj (c) I3 = Ti jkTkji

(d) I4 = Ti jkTj ik (e) I5 = Ti jkTjki (f) I6 = Ti jkTkij

Figure: 6 possible melonic graphs resulting from permuting the half-edges on the
right vertex. However, a sequence of renaming of indices i ↔ k and j ↔ k, which
is equivalent to exchanging colors in the graph, shows that I5 = I6 19 / 41



Tadpole, Tetrahedral and pillow graphs

The next category of invariants are tadpole graphs. There are
overall 6 possible graphs in this category, as shown in the
supplementary material.

Next, the tetrahedral graphs. These construct the class of complete
graphs with 4 vertices. This means algebraically that there will be a
contraction between all copies of the tensor.

Finally, the last category defines the pillow graphs, which are graphs
of degree 4 constructed by double contraction between two pairs of
tensors.

(a) I1 = Tj jkTi ik (b) Ti jkTi j′k′Ti′jk′Ti′j′k (c) Ti jkTi′jkTi j′k′Ti′j′k′

Figure: Examples of tadpole, tetrahedral and pillow graphs.

20 / 41



Loss function

By defining a function with the distance of the means in the numerator
and the sum of the standard deviations in the denominator, we obtain a
function whose maximum would give us the largest separation of the two
graphs. This quantity is given by:

fβ(I ) =
mS(I , β)−mN(I )

σN(I ) + σS(I , β)
(2)

where mN(I ) and σN(I ) are the mean and standard deviation of the trace
invariant, I , of a pure noise tensor and mS(I , β) and σS(I , β) correspond
to the mean and standard deviation of the same invariant in the case of a
spiked tensor with the signal to noise ratio, β. The numerator in this
expression is basically the contribution of the signal to the mean of the
invariant.
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Simplification and requirements

For the invariants that fulfil some conditions we can minimize the
following quantity to optimize the algorithm:

σN (
∑

i αi Ii )∑
i αi

Assuming the condition that Cov(Ii , Ij) ≪ Var(Ii ),Var(Ij) for each Ii and
Ij under the family of the considered invariants, elementary calculations in
the appendix show that this is minimized at:

αi = N 1

Vari
(3)

where N is a normalization factor that is constant for every factor.
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Experimental results

Figure: Signal detection for three different algorithms.
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Deep learning limitations

Neural networks suffer from the following limitations :

Overparametrized

High energy cost

A poor understanding of how they work, ”black boxes”
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Neural network

Figure: Neural network schema (image from [Sheeran2016])
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Linear layer and SVD

A linear layer is a function f : Rn → Rm defined by f (x) = Mx where
M ∈ Rm×n.

There are different methods to approximate M with a low rank, the
most popular method is based on singular value decomposition
UΣV = M

To compress M with a small loss of information we can choose to
neglect the small singular values and keep only the r largest singular
values. We then get:

M̃ =
r∑

i=1

σiUiV
⊤
i
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CNN and tensors

Figure: Tensors in a neural network
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Tensor decomposition

Figure: CP decomposition T ≡
∑r

i=1 λi (v
(i)
1 ⊗ . . . v (i)

k )

Figure: Tucker decomposition T = G ×1 U1 ×2 U2 ×3 U3
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CP decomposition

Figure: CP convolution
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Tucker decomposition

Figure: Tucker convolution

31 / 41



What criteria

The best way to compute the the decomposition is not trivial.
Standard algorithms focus on minimizing a classic norm like L1, L∞
or in most of the case L2.
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Sigma norm

Prior knowledge about the distribution of the input x distribution can be
taken into account by considering the weighted approximation problem as
suggested by [Denton et al., 2014].

Proposition

If we suppose that the distribution of the input x follows a distribution L
such that ∀i , i , cov (x [i ], x [j ]) is well defined, we have

E
∣∣∣K(1)x − K̃(1)x

∣∣∣ = ∥∥∥∥(K − K̃
)
(1)

Σ1/2

∥∥∥∥
F

(4)

Where Σ1/2(Σ1/2)⊤ = Exx⊤
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Taking into account the noise

We are minimizing
∥∥K − K̃

∥∥
If we consider that K = S + Z where Z is noise. We wish to
minimize

∥∥S − K̃
∥∥ instead of

∥∥K − K̃
∥∥
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Choice of the rank

To automatically choose a good rank we use the VBMF (Variational
Bayesian Matrix Factorization) algorithm [Nakajima et al., 2010] on a
matrix obtained by flattening one of the axis of the tensor.
The VBMF is an algorithm to estimate the rank of a matrix. We suppose
that we have to a noisy version of the matrix (precisely we have access to
the matrix plus a gaussian noise matrix Z ).

M = S + Z

The VBMF algorithm then estimate the rank of the underlying matrix S .
We are working on a method directly on the tensor using our previous
framework and Random Tensor Theory.
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Robustness

Neural networks achieve state of the art performances on pure
accuracy test.

However, they are known to be vulnerable to slight perturbations of
the input known as adversarial attacks.

Those attacks are a major concern for the deployment of neural
networks in real world applications.

In the case of compressed neural networks, the primary goal is to
make them available on devices with limited resources to use them in
real applications such as autonomous cars or drones. Hence, it is
important to study the robustness of compressed neural networks to
adversarial attacks.
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Adversial attacks

Figure: Example of adversial atatck
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Robustness results

Figure: Robustness results
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Transfer learning

Neural networks have large numbers of parameters and therefore
require a lot of data to be trained.

Finding a large amount of data of good quality for a specific task can
be difficult and expensive. Moreover, training a neural network from
scratch can be expensive in terms of computation.

Transfer learning is a technique that allows to use the knowledge
acquired by a neural network on a task to perform another task.

The idea is to use the weights of a neural network trained on a task as
a starting point for the training of a neural network on another task.
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Transfer learning results

Therefore I chose the FVGC-Aircraft dataset as a first benchmark. This
dataset is made of picture of differnt type of plane and each type of plane
has its own class.

Model Compression Fine Accuracy Accuracy
rate tuned Aircraft Imagenet

Googlenet 55.5 69.8
Googlenet 0.4 N 58.1 63.4
Googlenet 0.4 Y 57.7 70.0
Googlenet 0.8 N 58.2 23.6
Googlenet 0.8 Y 58.3 67.7

Resnet-18 56.4 69.8
Resnet-18 0.3 N 60.9 61.9
Resnet-18 0.3 Y 60.5 68.9
Resnet-18 0.6 N 60.5 18.8
Resnet-18 0.6 Y 57.9 66.3

Table: Results of transfer learning from Imagenet to FVGC-Aircraft dataset.
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Conclusion

We used RTT as a framework to systematically combine different
algorithms of signal detection.

Furthermore, we have tested a meta-learning approach to our problem
of finding optimal combination of signal detection algorithms. This
approach showed an improvement over state-of-the-art algorithms.

One of the possible compression techniques of deep neural networks is
tensor decomposition.

We proposed an adaptation of the popular tensor decomposition
algorithm ALS that efficiently takes into account prior probability
distribution of the data and that shows promising results.

We provided experimental evidence that the robustness of the
compressed networks is similar to the original network and that
compressed networks can be used as a better starting point for
transfer learning.

41 / 41



Denton, E. L., Zaremba, W., Bruna, J., LeCun, Y., and Fergus, R.
(2014).
Exploiting Linear Structure Within Convolutional Networks for
Efficient Evaluation.
In Advances in Neural Information Processing Systems, volume 27.
Curran Associates, Inc.

Nakajima, S., Sugiyama, M., and Tomioka, R. (2010).
Global analytic solution for variational Bayesian matrix factorization.
Advances in Neural Information Processing Systems, 23.

0 / 41


	Introduction
	First approach: Meta algorithm for signal detection
	Second approach: Tensor decomposition for neural networks
	Conclusion
	Appendix

