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Motivations and background

We define a matrix model that describes the Ising Model coupled to
the Causal Dynamical Triangulations (CDT). We would like to solve
for the partition function in terms of the couplings and study critical
behaviours.

We revisit a problem that appeared on the CDT Matrix Model, which
is finding the gaussian average of the character of the square of
hermitian matrices.

It may be useful to study the extension of these notions to tensor
models, so we may have a model for dimensions higher than two.
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What are our problems?

There is no known explicit expression for the Clebsch–Gordan and for
the Littlewood–Richardson coefficients in terms of the representations
involved.

The use of the character expansion method requires the consideration
of representations of GL(N) which its size grows with N2.

To solve for the partition function, we need the determinant of some
antisymmetric matrices, but no expression seems to be known.
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Main results

Unitary integral of the product of 4 matrix coefficients in terms of Clebsch-Gordan
coefficients.∫

U(N)

dΩ G r
ij (Ω)Ḡ

r
kl(Ω)G

s
mn(Ω)Ḡ

s
op(Ω) =

∑
r,m,n,p,q

c rm∗
acp c rnāc̄pc

rm
bdqc

rn∗
b̄d̄qd

−1
r

An explicit expression of an N ×N matrix Cm such that TrC p
m = Nδm,p in the large

N limit.

λts = e
2π
m

i sW(−e
2πm
N

i(t−1/2)−1)−
1
m , t = 1, ...,N/m and s = 1, ...,m .

For a representation R of size n of GL(N) with N ≫ n, an expression for the
average of character ⟨χR(A

2)⟩0.

⟨χR(A
2)⟩0 =

χR(1)2

χR(C1)
(1 + O(N−2)) = χR(1)(1 + O(N−1))

For finite N, an expression of ⟨χR(A
2)⟩0 in terms of a determinant of an

antisymmetric matrix.

⟨χ{h}(A
2)⟩0 =

1

Z

Vol(U(N))

(2π)N−1
Pf
(i,j)

(2hi )!(2hj)!

2hi+hj

∑
k+l=2hi
u+v=2hj
k+u is odd
l+v is odd

(−1)v
(k + u)!!(l + v − 2)!!

k!u!l!v !
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Ising Model on random 2D surfaces via Two Matrix Model
[V.A. Kazakov, 1986]
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(a) Spin up vertex (b) Spin down vertex (c) Interaction edge

(d) Fatgraph shown as a standard graph
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Ising Model on random 2D surfaces via Two Matrix Model

Action for the model with a spin associated to each vertex of the matrix
graph.

SIMV = N Tr

[
1

2
M2

+ +
1

2
M2

− − γM+M− − gM3
+ − gM3

−

]
,

with

M+ and M−: Hermitian matrices,

γ = e−2 1
T , where T is the Ising temperature, and

g = e−Λ, where Λ is a cosmological constant.
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Causal Dynamical Triangulation (CDT) Matrix Model
[D. Benedetti, J. Henson, 2009]
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(a) Spacelike edge (red)
and timelike edge (blue). (b) Vertex.

(c) Fatgraph shown as a simple graph.
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CDT properties

The CDT Matrix Model generates graphs with two defining properties: Every
vertex has two spacelike edges and one timelike edge; Every face can only have 2
or 0 timelike edges.

(a) A face with 2 timelike
edges and 3 spacelike
edges.

(b) A face with 0 timelike
edges and 4 spacelike
edges.

Action for CDT:

SCDT = N Tr

[
1

2
A2 +

1

2

(
C−1
2 B

)2

− gA2B

]
.

A and B: Hermitian matrices. C2 is a matrix that satisfies TrC p
2 = Nδp,2.
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CDT properties

This leads to the appearance of strips, composed by faces and timelike
edges; and borders of strips, composed of vertices and spacelike edges.
The strip possibilities are three:

(a) Regular strip (b) Singular strip (c) Mobius strip
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CDT properties

All borders have the same number of vertices and spacelike edges.

V = Es

Except for the singular strip, a face with no timelike edge, all strips have the same
number of faces and timelike edges.

F = Et + F0

Euler characteristic is simply the number of regular strips:

χ = F − E + V = (F − Et) + (V − Es) = F0

When there are two singular strips connected by two regular strips, we get the
sphere topology.

When there is no singular strips and the regular strips form a loop, we get the
torus topology.

When there is one singular strip and one non-orientable strip or strip border, we
get the projective plane topology.

When there is no singular strip and there are two non-orientable strips or strip
borders, we get the Klein bottle topology.

Juan Abranches (OIST)
7th of July of 2023 Quantum Gravity in Bordeaux
13 / 38



Ising Model with CDT Matrix Model
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(a) Green vertices: Spin up. Purple vertices: spin down. Red
edges: Spacelike edge. Blue edges: Timelike edge. All
vertices have degree 3. Fatgraph shown as a simple graph.
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CDT with Ising Model

Action for CDT coupled with Ising Model over the vertices:

S = N Tr

[
1

2
A2
++

1

2

(
C2

−1B+

)2
+

1

2
A2
− +

1

2

(
C2

−1B−
)2

− γA+A− − γ(C2
−1B+)(C2

−1B−)− gA2
+B+ − gA2

−B−
]
,

where A+, B+, A− and B− are hermitian matrices and C2 is the matrix that
satisfies TrC p

2 = Nδp,2.

Figure: Fatgraph shown as a standard graph
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Brief review of representations
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Brief review of representations

A d-dimensional representation of a group G is roughly a function
R : G → GL(d) such that for any pair g1, g2 ∈ G it satisfies
R(g1g2) = R(g1)R(g2).

The character in R of g ∈ G is the trace in that representation,
χR(g) = Tr(R(g)).

Representations of GL(N) can be parameterized by a sequence of N
decreasing non negative integers {h} = {h1, h2, ..., hN}, known as
shifted weights.

The size of a representation can be defined by the relation
n = #h =

∑
i hi − N(N − 1)/2.
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Applying the character expansion method
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The partition function for CDT+Ising Model will be

Z =

∫
dUdV e−NTr[ 12 (1−γ)U2+ 1

2 (1+γ)V 2− 1
4

g2

1−γ ((U2+V 2)C2)
2− 1

4
g2

1+γ ((UV+VU)C2)
2] ,

where U and V are hermitian matrices, and C2 defined by TrC p
2 = Nδp,2 as

before.

Up to proportionality constant in N, after applying the character expansion
[V. A. Kazakov et al., ’95] we get

Z ∼
∑

{h1},{h2}

(
Ng2

4(1− γ)

)#h1/2 (
Ng2

4(1 + γ)

)#h2/2

c{h1}c{h2}I{h1},{h2} ,

where U = Ω1Λ1Ω
†
1, V = Ω2Λ2Ω

†
2, Ω2 = Ω1Ω, and

I{h1},{h2} =

∫
dΛ1dΛ2 ∆(Λ1)

2∆(Λ2)
2e−NTr[ 12 (1−γ)Λ2

1+
1
2 (1+γ)Λ2

2]∫
dΩ1dΩ χ{h1}(Ω1(Λ

2
1 +ΩΛ2

2Ω
†)Ω†

1C2)

χ{h2}(Ω1(Λ1ΩΛ2Ω
† +ΩΛ2Ω

†Λ1)Ω
†
1C2) .
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Given a representation r of GL(N), for Ω in this representation define
as G r

ij (Ω) its matrix coefficients

One of the formulas that can be used through the character
expansion method is the orthogonality∫

U(N)
dΩ G r

ij (Ω)Ḡ
s
kl(Ω) = δrsδikδjl

1

dr

This formula can be used, for example, in the pure CDT Matrix
Model.

When trying to solve the CDT + Ising Model, one expression that
seems necessary is

I =

∫
U(N)

dΩ G r
ij (Ω)Ḡ

r
kl(Ω)G

s
mn(Ω)Ḡ

s
op(Ω) .

Juan Abranches (OIST)
7th of July of 2023 Quantum Gravity in Bordeaux
21 / 38



Weingarten Calculus
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Weingarten Calculus

The Weingarten Calculus deals with integrals of this type. Recent review in [B.
Collins, S. Matsumoto, J. Novak, 2021]

The mathod basicaly consists of finding the trivial representations that appear in
the product of the representations involved.

The product of two representations α and β can be decomposed into irreducible
representations, and there is a transformation V that separates these
representations, in terms of Clebsch-Gordan coefficients,

V |eαa ⟩|eβc ⟩ =
∑
r,k,p

c rkacp|erkp ⟩ .

With the use of Weingarten Calculus we find that the integral can be expressed as

Integral result

I =
∑

r,m,n,p,q

c rm∗
acp c rnāc̄pc

rm
bdqc

rn∗
b̄d̄qd

−1
r .

An algorithm is known but it is not enough, we would like a closed formula.
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Revisiting the CDT Matrix Model
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CDT partition function and average of A2

We want to solve the partition function for the couplings

Z =
1

Z0

∫
dA e

−NTr

[
1
2
A2− g2

2
(A2C2)2

]

In terms of characters

Z =
∑
{h}

gnχ{h}(C2)
2

χ{h}(1)
⟨χ{h}(A

2)⟩0

If it was just character of A it would be easier to solve, but the power
is trouble.

Conjecture [D. Benedetti, J. Henson, 2009]

⟨χ{h}(A
2)⟩0 = kN

1

N#

3∏
ϵ=0

∆(2h(ϵ))2
∏
i

(2h
(ϵ)
i )!!

Where the set of integers {h} has been divided into four sets
{h(0)}, ..., {h(3)} according to equivalence modulo 4.
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Counter example

Conjecture [D. Benedetti, J. Henson, 2009]

⟨χ{h}(A
2)⟩0 = kN

1

N#

3∏
ϵ=0

∆(2h(ϵ))2
∏
i

(2h
(ϵ)
i )!!

For the trivial representation, given by {h} = {3, 2, 1, 0}, the proportionality
factor is kN = 1/768:

1 = kN · 1 ·
3∏

i=0

(2i)!! = kN · 768 .

For the defining representation, given by {h} = {4, 2, 1, 0}, the
proportionality factor is kN = 1/(8 · 768):

4 = kN
1

4
(4− 0)2

(2 · 4)!!
(2 · 3)!!

3∏
i=0

(2i)!! = kN · 4 · 8 · 768 .

A contradiction.
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Properties of Cm

Cm is a matrix satisfying at large N the identity

TrC p
m = Nδm,p (1)

For each p = 1, ...,N, equation (1) is an equation on the eigenvalues of Cm.

Using the Girard–Newton formulae, we find the characteristic polynomial

fm(z) =

N/m∑
r=0

(−1)mrN r

(−m)r r !
(−λ)N−mr

Solving for its zeros, we find that for even N, the N eigenvalues are given by

Large N result

λts = e
2π
m

i sW(−e
2πm
N

i(t−1/2)−1)−
1
m , t = 1, ...,N/m and s = 1, ...,m .

W(z) is the principal value of a function satisfying W−1(z) = zez .

For N odd, the roots are the same as for N − 1, plus 0 as an additional root.
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-2 -1 1 2
Re(λ)

-1.0

-0.5

0.5

1.0

Im(λ)

Approximate curve

Approximate solution for N=100

Numerical solution for N=100

Numerical solution for N=50
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Symmetric Group and Schur-Weyl duality for ⟨χR(A)⟩0
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Symmetric Group method

Using Schur-Weyl duality and character orthogonality:

χR(A) =
1

n!

∑
σ∈Sn

χ̄R(σ)Tr(σA
⊗n) , (2)

where n is the size of the representation.

Using Wick contractions:

⟨A⊗n⟩0 = N− n
2

∑
γ∈[2

n
2 ]

γ .

Using (2) for C2: ∑
γ∈[2

n
2 ]

χR(γ) = n!N− n
2 χR(C2) .

After more use of orthogonality relations and Schur-Weyl duality:

⟨χR(A)⟩0 = n!
dR
lR

χR(C2) =
χR(1)χR(C2)

χR(C1)
,

where dR = χR(1) and lR are the dimensions of the GL(N) and Sn representations,
respectively, and TrC p

m = Nδp,m.
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Symmetric Group and Schur-Weyl duality for ⟨χR(A
2)⟩0
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Defining the partial trace P2Tr(B)j1···jni1···in =
∑

k1···kn B
j1···jnk1···kn
i1···ink1···kn , which is a contraction

over the last n variables, for N ≫ n we found that∑
γ∈[2n ]

P2Tr(γ α) =
∑
ρ∈Sn

Tr(ρ) ρ (1 + O(N−2)) .

As an example, consider the permutations [22]

(a) (1 2)(3 4) (b) (1 3)(1 4) (c) (1 4)(2 3)

The partial traces associated to these with α are

(a) (1)(2) (b) N2(1)(2) (c) N(1 2)

This way, we check that∑
γ∈[22]

P2Tr(γ α) = [1 + N2](1)(2) + N(1 2) = [N2(1)(2) + N(1 2)][1 + O(N−2)]
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Symmetric Group method

Using Schur-Weyl duality and character orthogonality,

χR(A
2) =

1

n!

∑
σ∈Sn

χ̄R(σ)Tr(σ(A
2)⊗n),

we get to a result similar to the previous, but with P2Tr(γ α) instead of just γ:

⟨χR(A
2)⟩0 = N−n dR

lR

∑
γ∈[2n ]

χR(P2Tr(γ α)) .

Using the partial trace result leads to

Large N result

⟨χR(A
2)⟩0 =

χR(1)2

χR(C1)
(1+O(N−2))

But this result is only for N ≫ n, while we expect that we need the result for
n ∼ N2.

This might be related to Walled Brauer Algebra. If we reflect half of the diagram,
it will be a diagram of this algebra, and the partial trace is similar to an operation
possible on this algebra.
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De Bruijn’s Formula with Pfaffians

1

N!

∫
dµ(X )deti,j fi (xj)Pf i,jA(xi , xj) = Pf

(i,j)

∫
dµ(x)dµ(y)fi (x)A(x , y)fj(y)

Juan Abranches (OIST)
7th of July of 2023 Quantum Gravity in Bordeaux
34 / 38



Pfaffian method

Average by the integral over the diagonal part:

⟨χr (A
2)⟩ = vol(U(N))

N! (2π)N

∫
dX

N∏
i<j

(xi − xj)
2 det x

2(mj+N−j)

i∏
(x2

i − x2
j )

e−
N
2
TrX 2

We can turn the N integrals into a Pffaffian and 2 integrals by de Bruijn’s formula
[N. G. de Bruijn, ’55], with a principal value integral

⟨χ{h}(A
2)⟩0 =

1

Z0

Vol(U(N))

(2π)N
Pf

∫
dxdy e−

N
2
(x2+y2)x2Nhi y 2Nhj x − y

x + y
.

Solving the integral with a damping and by saddle point approximation we get

⟨χ{h}(A
2)⟩0 =

1

Z0

Vol(U(N))

(2π)N

(
2π

N

) N
2

e−N
∑

i hi
∏
i

(2hi )
Nhi 2

N
2 Pf

hi + hj
hi − hj

Are we allowed to do this? In which conditions we can apply the saddle point
approximation while having poles?

Divergences and problems.
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Pfaffian method

Exact solution with a = (α+ β)/
√
2 and b = (−α+ β)/

√
2

⟨χ{h}(A
2)⟩0 =

1

Z0

Vol(U(N))

(2π)N
Pf

2π

N

∂2hi

∂α2hi

∂2hj

∂β2hj
a eN

a2

2

∫ b

0

db′ eN
b′2
2

∣∣∣∣
α,β=0

,

which we can evaluate in terms of summations

Finite N result

⟨χ{h}(A
2)⟩0 =

1

Z0

Vol(U(N))

(2π)N−1
Pf
(i,j)

(2hi )!(2hj)!

2hi+hj

∑
k+l=2hi
u+v=2hj
k+u is odd
l+v is odd

(−1)v
(k + u)!!(l + v − 2)!!

k!u!l!v !
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Conclusion

We were able to express the unitary integral of the product of 4 matrix
coefficients in terms of Clebsch-Gordan coefficients, but a general expression
of these coefficients is still unknown.

Got an explicit expression of an N × N matrix Cm such that TrC p
m = Nδm,p

in the large N limit, which should be helpful for applying numerical methods
to the model.

For a representation R of size n of GL(N) with N ≫ n, we found an
expression for the average of character ⟨χR(A

2)⟩0. We would like to extend
this for the case when n also grows.

For finite N and n, we found an expression of ⟨χR(A
2)⟩0 in terms of a

determinant of an antisymmetric matrices. Solving this determinant would
likely be the closest to a good solution.
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Thank you!
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